Understanding the Interactions Among the Early Successional Development of the Ruminant Gut Microbiome, Immune System, and Animal Health

The gastrointestinal tract (GIT) microbiota of production animals are firmly established as key features that underpin animal health, development, and productivity.  Early gut colonization is of particular importance affecting the GIT morphology, and local and systemic biochemistry, and immunology of the animal with critical impacts on nutrition, and neonatal resistance to pathogenic challenge. Although perturbations of an animal’s GIT microbiota can occur at any age with profound consequences, perturbations during early GIT development can be particularly severe and have significant and long-lasting sequelae.

With that in mind our group has set out to determine the earliest and most significant influences on the neonatal GIT microbiota and its corresponding relationships with health, immune development and efficacy, and nutritional efficiency. Our ultimate goal is to develop smart strategies based on basic science to optimize the GIT microbiome to benefit the health and performance of agricultural livestock species.

Contact Dr Yeoman for more information on this project.


Related Publications

Yeoman, C.J., White, B.A. 2014. Gastrointestinal tract microbiota and probiotics in production animals. In: Annual Reviews of Animal Biosciences (book chapter). Eds: Lewin HA, Roberts RM, Berens M. Ann. Rev. Anim. Biosci. 2: 469 – 486., Palo Alto CA, USA.

Henderson G, Cox F, Ganesh S, Jonker A, Young W, et al. 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports 5: 14567. doi:10.1038/srep14567

Grinberg I.R., Yin G., Borovok I., Miller M.E., Yeoman C.J., Dassa B., Yu Z., Mizrahi I., Flint H.J., Bayer E.A., White B.A., Lamed R. 2015. Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome. Microbiol. Lett. 362: 1 – 10.

Swartz JD, Lachman M, Westveer K, O’Neill T, Geary T, Kott RW, Berardinelli JG, Hatfield PG, Thomson JM, Roberts A, Yeoman CJ. 2014. Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of lactobacilli and near-neutral pH. Front. Vet. Sci. 1: 19.

Piao, H., Lachman, M., Malfatti, S., Sczybra, A., Knierim, B., Auer, M., Tringe, S.G., Mackie, R.I., Yeoman, C.J., Hess. M. 2014. Temporal dynamics of fibrolytic and methanogenic rumen microorganisms during in situ incubation of switchgrass determined by 16S rRNA gene profiling. Front. Microbiol. 5: 307

Dassa B, Borovok I, V. Ruimy-Israeli, R. Lamed, H.J. Flint, S. Duncan, B. Henrissat, P. Coutinho, M. Morrison, P. Masoni, C.J. Yeoman, B.A. White, E.A. Bayer. 2014. Rumen cellulomics: Divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six ruminococcal strains. PLoS One 9: e99221.

Schachtschneider KM, Yeoman CJ, Isaacson RE, White BA, Schook LB, Pieters M. 2013. Modulation of systemic immune responses through commensal gastrointestinal microbiota. PLoS One 8:e53969.

Xie G, Duff GC, Hall LW, Allen JD, Burrows CD, Bernal-Rigoli JC, Dowd SE, Guerriero V, Yeoman CJ. 2013. Alteration of digestive tract microbiome in neonatal Holstein bull calves by bacitracin methylene diasalicylate treatment and scours. J. Animal Sci. 91: 4984-90. doi: 10.2527/jas.2013-6304

Yeoman CJ, Chia N, Jeraldo P, Sipos M, Goldenfeld ND, White BA. (2012) The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews 13(1): 89-99

Brulc JM, Yeoman CJ, Wilson MK, Berg Miller ME, Jeraldo P, Jindou S, Goldenfeld N, Flint HJ, Lamed R, Borovok I, Vodovnik M, Nelson KE, Bayer EA, White BA. (2011) Cellulosomics, a gene-centric approach to investigating the intraspecific diversity and adaptation of Ruminococcus flavefaciens within the rumen. PLoS One 6(10) e25329

Kabel MA, Yeoman CJ, Han Y, Dodd D, Abbas CA, de Bont JA, Morrison M, Cann IK, Mackie RI. (2011) Biochemical characterization and relative expression levels of multiple carbohydrate esterases by the xylanolytic rumen bacterium Prevotella ruminicola 23 grown on an ester-enriched substrate. Applied and Environmental Microbiology 77(16) 5671-5681

Yeoman CJ, Chia N, Yildirim S, Berg Miller ME, Kent A, Stumpf R, Leigh SR, Nelson KE, White BA, Wilson BA. (2011) Towards an Evolutionary Model of Animal-Associated Microbiomes. Entropy 13(3) 570 – 594

Kelly WJ, Leahy SC, Altermann E, Yeoman CJ, Dunne JC, Kong Z, Pacheco DM, Li D, Noel SJ, Moon CD, Cookson AL, Attwood GT. (2010) The glycobiome of the rumen bacterium Butyrivibrio proteoclasticus B316(T) highlights adaptation to a polysaccharide-rich environment. PLoS One 5( 8 ): e11942

Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, Li D, Kong Z, McTavish S, Sang C, Lambie SC, Janssen PH, Dey D, Attwood GT. (2010) The genome of the rumen methanogen Methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One 5(1): e8926